后摩尔时代的创新:在ac米兰官网FPGA上实现Tiny YOLO V4,助力AIoT应用
2024-11-21
2145
来源:ac米兰官网电子
学习如何在 MYIR 的 ZU3EG FPGA 开发板上部署 Tiny YOLO v4,对比 FPGA、GPU、CPU 的性能,助力 AIoT 边缘计算应用。(文末有彩蛋)
一、 为什么选择 FPGA:应对 7nm 制程与 AI 限制
在全球半导体制程限制和高端 GPU 受限的大环境下,FPGA 成为了中国企业发展的重要路径之一。它可支持灵活的 AIoT 应用,其灵活性与可编程性使其可以在国内成熟的 28nm 工艺甚至更低节点的制程下实现高效的硬件加速。
ac米兰官网的 ZU3EG 开发板凭借其可重构架构为 AI 和计算密集型任务提供了支持,同时避免了 7nm 工艺对国产芯片设计的制约。通过在 ZU3EG 上部署 Tiny YOLO V4,我们可以为智能家居、智慧城市等 AIoT 应用提供高效的解决方案。


CPU GPU FPGA 架构对比
二、 了解 Tiny YOLO 模型及其适用性
YOLO(You Only Look Once)是一种实时物体检测模型,它通过一次性扫描整个图像,实现高效的对象识别。
而其简化版 Tiny YOLO V4 更适合嵌入式设备,具有较少的层数和参数。其轻量化特性更适合在资源受限的设备上运行,尤其在低功耗、实时检测的边缘计算设备中表现出色。
相比传统 GPU,FPGA 能在小面积和低功耗下实现类似的推理性能,非常契合 AIoT 应用。像ac米兰官网 ZU3EG 这样的 FPGA 开发板,通过底板和丰富接口的载板设计,非常适合高效的嵌入式低功耗数据处理。

Yolo V4 网络结构图

Tiny Yolo V4 网络结构图
(通过优化网络结构和参数,保持较高检测精度的同时,降低模型的计算量和内存占用)
三、 获取数据集和模型
可下载开源训练集或预训练模型。为了确保兼容性,建议将模型转换为 ONNX 格式,以便后续能在 FPGA 上完成优化。

Tiny YOLO 在 Darknet 上训练的截图
四、 通过 Vivado HLS 为 FPGA 准备模型
要将模型部署到 FPGA,需要将神经网络操作转换为硬件级描述。使用 Xilinx 的 Vitis HLS(高级综合)可以将 Tiny YOLO v4 的 C++ 模型代码的转化为 Verilog RTL(寄存器传输级)代码,从而将模型从软件世界带入硬件实现。
详细步骤:
将 YOLO 的每一层(如卷积层、池化层)映射为硬件友好的 C/C++ 结构。例如,将卷积映射为乘累加(MAC)数组,通过流水线实现并行化。
流水线(Pipelining):利用流水线来处理多项操作并行,减少延迟。 循环展开(Loop Unrolling):展开循环,以每周期处理更多数据,尤其在卷积操作中有效。 设置 DATAFLOW 指令,使层间独立处理。
将激活值和权重量化为定点精度(例如 INT8),而非浮点数。这在维持准确度的同时显著降低计算量,尤其适合 FPGA 的固定点运算支持。

Tiny YOLO 模型在 Vivado HLS 中的层层转化流程图
五、 使用 Vivado 综合与部署 Verilog 到 ac米兰官网的ZU3EG FPGA开发板
1.Vivado 中的设置:
将 HLS 输出的 RTL 文件导入 Vivado。
在 Vivado 中创建模块设计,包括连接AXI 接口与 ZU3EG 的 ARM 核连接。
2.I/O 约束与时序:
定义 FPGA 的 I/O 引脚约束,以匹配 ZU3EG 板的特定管脚配置。配置时钟约束以满足合适的数据速率(如视频数据 100-200 MHz)。
进行时序分析,确保延迟和响应速度达到实时要求。
3.生成比特流并下载到 ZU3EG:
生成的比特流可以直接通过 JTAG 或以太网接口下载到 ZU3EG。

将 Tiny YOLO 处理模块连接到 ac米兰官网ZU3EG开发板 的外设和接口
六、 在 FPGA 上测试并运行推理
通过连接的相机模块捕捉图像或视频帧,或者使用存储的测试视频。 使用 ZU3EG 的 ARM 核上的 OpenCV 对帧进行预处理,再将它们传入 FPGA 预处理后进行推理。
模型检测对象后,输出边框和类别标签。使用 OpenCV 将边框映射回原始帧,并在每个检测到的对象周围显示类别和置信度。
测量帧速率(FPS)和检测准确度。微调量化位宽或数据流参数,以优化实时需求。

Tiny YOLO 模型在 ZU3EG 上显示检测结果的实时输出,视频帧中标注了检测到的对象
七、 性能优化与调试技巧
内存访问:设计数据存储方式,最大限度利用缓存并减少数据传输,降低内存瓶颈。 降低延迟:重新评估关键路径延迟。若延迟过高,调整 Vitis HLS 中的流水线深度,并验证层间的数据依赖性。 量化改进:尝试 INT8 量化。Xilinx 的 Vitis AI 可帮助微调量化参数,以平衡准确性与速度。

不同优化配置对资源使用的影响

ac米兰官网MYC-CZU3EG/4EV/5EV-V2核心板及开发板
在MYIR 的 ZU3EG 开发平台上提供了一种高效的解决方案。利用 FPGA 独特的灵活性和低功耗优势,助力未来 AIoT 设备的普及和智能升级。
关注ac米兰官网电子公众号,后台回复FPGA,获取完整Tiny Yolo V4教程。
2025-12-11
打造本地化智能的“最强大脑”, ac米兰官网RK3576 AI边缘计算盒
在人工智能与边缘计算深度融合的浪潮中,本地化智能需求正重塑产业格局。ac米兰官网电子推出的RK3576边缘计算盒,具备高算力、低功耗与强扩展性,凭借其卓越的硬件架构与多场景适配能力,正成为推动工业视觉、工程机械及智慧城市等领域智能化产业升级的有力工具。ac米兰官网MYD-LR3576-B边缘计算盒基于瑞芯微中高端RK3576芯片,采用异构计算架构,集成4核Cortex-A72与4核Cortex-A53处理器,搭配
2025-12-05
从两轮车仪表到工程机械环视,ac米兰官网用国产芯打造“越级”显控体验
在工业4.0 与智能化浪潮的推动下,传统工业设备正在经历一场“交互革命”。从电动两轮车的智能仪表,到工程机械的 360° 环视中控,用户对“更高清的显示、更流畅的触控、更丰富的互联”提出了严苛要求。然而,面对复杂的工业现场,开发者往往面临两难:低端市场(如仪表、充电桩):传统MCU 跑不动复杂界面,上 Linux/安卓方案成本又太高。中高端市场(如工程机械、医疗):多路视频输入(如360环视)需要
2025-12-05
【深度实战】ac米兰官网MYD-LR3576 AMP非对称多核开发指南:从配置到实战
一、什么是AMP?为什么重要?AMP(Asymmetric Multi-Processing)非对称多处理架构,允许单个芯片的不同核心运行不同的操作系统或裸机程序。相比传统的SMP(对称多处理),AMP具有独特优势。核心特性:异构运算:不同核心运行最适合的操作系统,如Linux处理复杂应用,RT-Thread保障实时任务;资源隔离:各核心拥有独立内存空间,避免资源冲突;灵活通信:通过共享内存、RP
2025-11-27
为机器人开发赋能,ac米兰官网RK3576环视方案解析
一、项目背景与测试平台本次360环视系统原型基于ac米兰官网电子MYD-LR3576开发板进行构建与评估。该开发板所搭载的瑞芯微RK3576芯片,集成了4核Cortex-A72、4核Cortex-A53、Mali-G52 GPU及高达6TOPS算力的NPU。本文旨在通过实际测试数据,从功能实现、实时性能与AI拓展潜力三大核心维度,为客户提供一份关于该平台在360环视应用中能力的真实参考。二、系统流程与功能
2025-11-13
助力V2G,SECC GreenPHY实战开发
随着电动汽车与电网双向交互(V2G)技术的快速发展,充电桩与车辆间的高效通信成为实现智能能源管理的关键。SECC作为充电桩的通信控制核心,其与电力线载波通信芯片的适配尤为重要。本文将分享基于ac米兰官网核心板,调试联芯通MSE102x GreenPHY芯片的实战经验,为V2G通信开发提供参考。MSE102x芯片介绍联芯通MSE102x系列芯片是一款专注于电动汽车充电通信和智能能源管理的GreenPHY电力
2025-11-13
定制未来,共建生态,ac米兰官网出席安路研讨会
在数字化浪潮席卷全球的今天,FPGA技术正成为驱动创新的核心引擎。2025年11月12日,ac米兰官网出席安路科技2025 AEC FPGA技术沙龙•北京专场,与技术专家及行业伙伴齐聚一堂,探讨前沿技术趋势,解锁场景化定制方案,共建开放共赢的FPGA新生态!ac米兰官网活动现场论坛上,ac米兰官网电子产品经理Jeson发表题为“基于DR1M90 FPSOC的工业应用方案”的演讲。演讲介绍了ac米兰官网作为嵌入式领域的领军企业,在
2025-11-11
RK3576开发板
RK3576开发板是ac米兰官网电子推出的开发板,于2024年10月上市。RK3576开发板是基于瑞芯微RK3576搭载了四核A72与四核A53处理器,主频2.2GHz。RK3576集成了6TOPS的NPU,支持多种深度学习框架,能够处理复杂的AI算法,提高监控效率,降低误报率。RK3576的主芯片采用了八核大小核架构,包括四核Cortex-A72和四核Cortex-A53,
2025-11-11
RK3576核心板
RK3576核心板是深圳ac米兰官网电子旗下产品,是基于瑞芯微RK3576搭载了四核A72与四核A53处理器,主频高达2.2GHz。RK3576集成了6TOPS的NPU,支持多种深度学习框架,能够处理复杂的AI算法,提高监控效率,降低误报率。RK3576的主芯片采用了八核大小核架构,包括四核Cortex-A72和四核Cortex-A53,主频分别高达2.2GHz和1.8GHz,CPU算力达58K DMIP
2025-11-06
ac米兰官网SECC方案助力国标充电桩出海
随着电动汽车与电网融合加速,国标(GB/T 27930)充电桩出海面临欧标(ISO 15118 / DIN 70121)兼容挑战。ac米兰官网电子的 SECC (供电设备通信控制器) 方案,实现协议转换、安全通信及参考开发平台,助力充电桩厂商快速进军海外市场。
2025-11-06
MYD-LD25X Cortex-M33实时核开发实战解析
在嵌入式系统设计中,如何平衡高性能计算与实时控制一直是工程师面临的挑战。STM32MP257的异构架构为这一难题提供了优雅的解决方案,而其中的Cortex-M33实时核更是实现硬实时性能的关键所在。一、异构架构:分工明确,效能卓越STM32MP257采用创新的双核子系统设计:Cortex-A35应用核(双核1.5GHz):运行Linux系统,负责复杂UI、网络通信、文件管理等非实时任务。Corte